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ABSTRACT

Fully nonlinear mesoscale model simulations are used to investigate the momentum fluxes of

gravity waves that emerge at a “far-field” height of 6 km from steady unsheared flow over both

an axisymmetric and elliptical obstacle for nondimensional mountain heights ĥm = Fr−1 in

the range 0.1–5, where Fr is the surface Froude number. Fourier- and Hilbert-transform di-

agnostics of model output yield local estimates of phase-averaged momentum flux, while area

integrals of momentum flux quantify the amount of surface pressure drag that translates into

far-field gravity waves, referred to here as the “wave drag” component. Estimates of surface

and wave drag are compared to parameterization predictions and theory. Surface dynamics

transition from linear to high-drag (wave-breaking) states at critical inverse Froude numbers

Fr−1
c predicted to within 10% by the transform relations of Smith (1989b). Wave drag peaks

at Fr−1
c < ĥm . 2, where for the elliptical obstacle both surface and wave drag vacillate

due to cyclical buildup and breakdown of waves. For the axisymmetric obstacle, this occurs

only at ĥm = 1.2. At ĥm &2–3 vacillation abates and normalized pressure drag assumes a

common normalized form for both obstacles that varies approximately as ĥ−1.3
m . Wave drag

in this range asymptotes to a constant absolute value that, despite its theoretical shortcom-

ings, is predicted to within 10-40% by an analytical relation based on linear clipped-obstacle

drag for a Sheppard-based prediction of dividing streamline height. Constant wave drag at

ĥm ∼2–5 arises despite large variations with ĥm in the three-dimensional morphology of the

local wave momentum fluxes. Specific implications of these results to the parameterization

of subgrid-scale orographic drag in global climate and weather models are discussed.
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1. Introduction

Finite computing resources force global numerical weather and climate prediction models

to operate at spatial resolutions that prevent an explicit simulation of the full spectrum of

dynamics that can arise when surface flow impinges on mesoscale orography. Such dynamics

exert drag forces on the larger scale flow and so all credible numerical weather and climate

prediction models incorporate parameterizations of these unresolved, or subgrid-scale, oro-

graphic mesoscale drag forces (hereafter OMD). Guidance for OMD parameterization comes

from observations, numerical modeling and laboratory experiments.

Mesoscale dynamics observed in and around realistic three-dimensional mountain ranges

remain challenging to model and reproduce even with state-of-the-art tools (e.g., Smith

et al. 2006). More reproducible OMD findings have emerged from idealized numerical and

laboratory simulations in which a prescribed upstream flow of constant x–directed velocity

U and buoyancy frequency N impinges upon an isolated three-dimensional elliptical obstacle

h(x, y) of peak height hm. A typical form, also used in this work, is

h(x, y) =
hm

[1 + (x/a)2 + (y/b)2]3/2
. (1)

To first order, the dynamical response depends on the normalized peak obstacle height

ĥm = Nhm/U = Fr−1, (2)

where Fr is surface Froude number. When ĥm ≪ 1 flow passes across the obstacle, gener-

ating a linear orographic gravity wave response whose three-dimensional form and areally-

integrated momentum flux DL can be computed analytically (Phillips 1984; Smith 1988).

As ĥm → 1, total pressure drag across the mountain, Dp, begins to exceed the linear solution
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DL by factors of up to ∼2. These so-called “high-drag” states form as flow stagnates aloft

(wave breaking) and on the upstream slope (flow splitting), triggering leeside collapse of

isentropes, fast downslope winds, turbulence and downstream vortices (Smolarkiewicz and

Rotunno 1989; Miranda and James 1992; Ólafsson and Bougeault 1996; Schär and Durran

1997). At ĥm &2–3 wave breaking eases or abates and pressure drag eventually drops below

DL. As ĥm increases, a progressively deeper surface flow layer stagnates upstream and splits,

so that only the flow above this layer can pass across the obstacle peak, generating gravity

waves of reduced amplitude and wavelength compared to linear predictions (e.g., Ding et al.

2003; Lindeman et al. 2008).

The responses also vary with the obstacle’s aspect ratio

β = b/a. (3)

Variations with β in the linear (ĥm ≪ 1) hydrostatic limit were derived analytically by

Phillips (1984). Dynamical responses close to the mountain as a function of both ĥm and

β were first proposed by Smith (1989b) based on limits of the linear hydrostatic transform

relations of Smith (1988) for onset of wave breaking (ĥm > ĥcb) and flow splitting (ĥm > ĥcs).

Figure 1 reproduces the resulting regime diagram, which demarks linear regions at ĥm <

ĥc in white from various gray-shaded nonlinear responses at ĥm > ĥc, based on a critical

normalized obstacle height (or critical inverse Froude number) ĥc = Fr−1
c = min

[

ĥcb, ĥcs

]

.

At β ≫ 1 it predicts transition from linear wave solutions at ĥm ≪ 1 to a wavebreaking-only

regime at ĥm values slightly less than unity, prior to the onset of both wave breaking and

flow splitting at ĥm & 1. As ellipticity is reduced (β → 1+) the wavebreaking region narrows

and eventually disappears at β ∼ 1, due to progressively greater wave-field dispersion. For
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β . 1 a transition from linear waves to pure flow-splitting dynamics occurs at progressively

larger ĥc values as β decreases, along with progressively smaller pressure drags (Phillips

1984). These predicted regimes have been tested and broadly confirmed using numerical

models and tank experiments (e.g., Miranda and James 1992; Ólafsson and Bougeault 1996;

Vosper et al. 1999; Bauer et al. 2000; Ding et al. 2003).

Since Figure 1 was formulated by Smith (1989b) for responses in just the lowest few

kilometers above the mountain, numerical and laboratory studies have focused on quantifying

the total pressure drag across the obstacle and its variation with ĥm and β and have not

quantified the fraction of the pressure drag due to gravity waves that propagate away from

the obstacle at larger (nonlinear) ĥm values. OMD parameterizations require estimates of

both the total pressure drag near the mountain and the far-field gravity wave component.

Some studies have investigated wave properties and/or momentum fluxes for specific cases

(Miranda and James 1992; Vosper et al. 1999; Vosper 2000; Ding et al. 2003; Lindeman

et al. 2008; Wells et al. 2008). Yet, despite extensive literature on linear wave properties at

ĥm ≪ 1 and high-drag wavebreaking states at ĥm ∼ 1, we are not aware of any work that has

as yet systematically documented both surface pressure drag and gravity wave momentum

fluxes from idealized three-dimensional obstacles over the full range of potential ĥm values:

closest perhaps is the work of Welch et al. (2001) for two-dimensional sinusoidal topography

(see also Aguilar and Sutherland 2006).

The resulting uncertainty directly impacts the current generation of OMD parameteriza-

tions, which have been heavily influenced by this literature on drag due to idealized three-

dimensional obstacles. Most modern OMD schemes fit subgridscale mesoscale orography

within grid boxes to equivalent elliptical obstacle shapes in order to utilize their documented
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drag properties (Lott and Miller 1997; Scinocca and McFarlane 2000), Yet these schemes

must quantify both the total surface drag and the propagating gravity-wave component,

since gravity waves propagate vertically and can deposit momentum flux at higher altitudes,

while the remaining drag is confined and applied near the surface. Given the lack of quanti-

tative guidance on orographic gravity wave momentum fluxes from the modeling literature

to date, simple theoretical estimation methods are employed that vary among OMD im-

plementations (Lott and Miller 1997; Gregory et al. 1998; Scinocca and McFarlane 2000;

Webster et al. 2003) and require independent research results for objective validation.

Here we conduct fully nonlinear mesoscale model simulations of flow across obstacles of

the form (1) at β values of 1 and 3 for a range of ĥm values shown with solid circles in

Figure 1. Our focus is on quantifying the momentum fluxes of propagating gravity waves

that emerge at some altitude zi above the nonlinear surface dynamics near the obstacle, and

how these “far field” wave fluxes relate both to the total surface pressure drag and to simpler

predictions used in OMD parameterizations.

2. Modeling and Diagnostic Tools

a. WRF Simulations

We use version 3.0 of the Advanced Research WRF (Weather Research and Forecast-

ing) model (Skamarock et al. 2008). The WRF model is nonlinear and fully compressible,

discretized with fifth/third-order finite differences for the horizontal/vertical advection, and

third-order Runga-Kutta for the time stepping.
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Our three-dimensional computational domain, (x, y, z), is square horizontally with the

obstacle h(x, y) in (1) located slightly upstream of the domain center to allow more room

for dynamics downstream of the obstacle to evolve, such that −L/3 ≤ x ≤ 2L/3 and

−L/2 ≤ y ≤ L/2, L = 900 km and z = 0–30 km. Inflow/outflow conditions are applied

at the lateral boundaries. The horizontal gridpoint resolution (∆x, ∆y) is 1.5x1.5 km2.

Our 0–30 km vertical domain is divided into 200 levels using WRF’s pressure-based vertical

coordinate, 120 of which are below z =15 km where the vertical resolution ∆z ≈ 125 m,

with ∆z gradually increasing above 15 km.

In every experiment we adopt constant vertical profiles of N = 0.01 rad s−1 and x-directed

horizontal velocity U = +10 m s−1, then vary hm and β from experiment to experiment. We

choose a = 10 km to minimize the rotational and nonhydrostatic linear drag modifications

that become significant at larger and smaller widths, respectively (Klemp and Lilly 1980; Mi-

randa and James 1992), then set b = βa. We adopt a frictionless (free-slip) lower boundary,

a 1.5-order turbulent closure scheme, and omit Coriolis effects (f = 0) and moisture.

To minimize artificial reflection of gravity waves from the model’s rigid lid, the top half

of the domain (z = 15–30 km) contains implicit vertically-varying Rayleigh friction of the

Klemp et al. (2008) form. Details are given in section 2d.

b. Diagnostic Fourier Transform (FT) Method

To help characterize three-dimensional gravity wave fields in WRF simulations, we em-

ploy a diagnostic FT method introduced by Lindeman et al. (2008). The method utilizes

the steady state (t → ∞) form of the time-dependent Fourier-ray algorithm of Broutman
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et al. (2006). For the case of vertical velocity

w(x, y, z) =

∞
∫

−∞

∫

w̃(k, l, z) eı(kx+ly)dk dl , (4)

the method solves for w̃(k, l, z) using ray methods (Broutman et al. 2002). For the specific

case of constant U and N profiles considered here, the Fourier-ray solutions at heights z and

zi are related as

w̃(k, l, z) =

[

ρ(zi)

ρ(z)

]1/2

w̃(k, l, zi)e
ım(z−zi), (5)

where vertical wavenumber m follows from the dispersion relation

m = −(k2 + l2)1/2

(

N2

ω̂2
− 1

)1/2

, (6)

(k, l) is horizontal wavenumber, and, since we assume stationary waves, intrinsic frequency

ω̂ = −kU . To evaluate (4) we set the Fourier coefficients with k > 0 equal to zero (assuming

U > 0), multiply the Fourier coefficients with k < 0 by two, and take the real part of the

resulting Fourier transform ẘ(x, y, z), i.e. w = Re(ẘ). The choices of k < 0 and m < 0

ensure upward (downward) group (phase) propagation. Additional terms in the dispersion

relation can be included (Broutman et al. 2009) but are omitted here since they have minor

effects. We also omit trapping and tunneling terms (Broutman et al. 2003, 2009) due to the

absence of shear.

For linear problems (ĥm ≪ 1) the FT method can be initialized at the surface zi = 0

using the orographic elevations h(x, y). The lower boundary condition

w̃(k, l, zi = 0) = −ıω̂h̃(k, l), (7)

where h̃(k, l) is the Fourier transform of h(x, y), yields the linear steady-state mountain wave

response using (4)-(6).
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In characterizing mountain waves in nonlinear WRF simulations (ĥm & 1), we assume

that nonlinear dynamics are confined to heights z < zi nearer the mountain, and that a

nearly linear stationary steady wave response emerges at zi after some time ti (Lindeman

et al. 2008). For the case of vertical velocity, WRF output initializes the FT method as

w̃(k, l, zi) = w̃W (k, l, zi, ti), (8)

where w̃W (k, l, zi, ti) is the horizontal two-dimensional Fourier transform of the WRF vertical

velocity field at height zi and time ti. Final values of zi and ti are chosen after inspection

of the WRF-simulated dynamics (see section 2d): typical values used in our work will be

zi = 6 km and ti = 24 hours.

The gravity-wave polarization relations allow us to convert w̃(k, l, z) into corresponding

solutions for other variables, such as the horizontal velocity components ũ and ṽ. Here we

utilize the resulting complex spatial solutions ů, v̊, and ẘ, defined earlier, whose real parts

are the FT solution (4) for ũ, ṽ and w̃, respectively, and whose imaginary parts are the

Hilbert transforms of those FT solutions, thus providing local amplitudes and phases of the

velocity solutions (e.g., Mercier et al. 2008). This latter property, together with the nπ phase

difference between horizontal and vertical velocity components (n ∈ Z), allow us to combine

ů, v̊, and ẘ to yield local solutions of phase-averaged momentum flux per unit mass

uw(x, y, z) =
1

4
(̊uẘ∗ + ů∗ẘ) , (9)

vw(x, y, z) =
1

4
(̊vẘ∗ + v̊∗ẘ) . (10)

where asterisks denote a complex conjugate. The relations (9) and (10) differ from other

local diagnostics used to quantify wave momentum fluxes (e.g., Durran 1995) by using a
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Fourier-ray decomposition of the WRF output to synthesize a phase-averaged result. Their

fidelity depends on the linear stationary wave assumptions underpinning this FT method,

and so are assessed when applied to WRF output in what follows.

c. Drag

1) Surface Pressure Drag

The total surface pressure drag across the obstacle

Dp =

∞
∫ ∫

−∞

p′
(

∂h

∂x
,
∂h

∂y

)

dx dy, (11)

where p′ is the surface pressure anomaly (hereafter we denote WRF anomalies with lowercase

primed symbols to distinguish them from spatial realizations of the Fourier-ray solutions

which are unprimed lowercase).

In the linear (ĥm ≪ 1) hydrostatic approximation, (1) and (11) yield analytical drag

solutions of the form

|DL| = DL(β) = B(β)aρ0NUh2
m, (12)

where ρ0 is upstream surface density, and B(β) is the scaling form factor for the obstacle (1)

(Phillips 1984). In our WRF runs, U and N remain constant while peak mountain heights

hm are varied. Thus, the linear drag (12) scales with ĥm = Fr−1 in our WRF runs as

|DL| = B(β)aρ0
U3

N
ĥ2

m, (13)

and peaks at the largest (nonlinear) ĥm values.

Consistent with previous studies (e.g., Miranda and James 1992; Bauer et al. 2000), it

will prove most useful for parameterization applications to study nondimensional drag values
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normalized by the relevant linear prediction: e.g.

D̂p =
Dp

DL

. (14)

In computing Dp = |Dp|, since U is x-directed, only the x-component of Dp strictly acts

a drag on the flow and, due to the symmetry of the problem, the y components (sometimes

referred to as lift forces) should integrate to zero. Accordingly many studies simply compute

the x-component of (11) only (e.g., Epifanio and Durran 2001). For consistency, here we

compute both components and evaluate (11) by integrating over the full horizontal WRF

domain of −L/3 ≤ x ≤ 2L/3 and −L/2 ≤ y ≤ L/2.

2) Gravity-Wave Contribution: “Wave Drag”

The component of the drag due to propagating gravity waves at a given height z is

Dw(z) = ρ(z)

∫ +2L/3

−L/3

∫ +L/2

−L/2

(u′w′, v′w′) dx dy, (15)

where u′, v′ and w′ are local WRF zonal, meridional and vertical velocity anomalies, respec-

tively, at height z. In the linear regime one should recover Dw(z) = Dp ≈ DL at all heights,

a property we utilize in section 2d to tune the WRF sponge layer.

The FT method yields corresponding terms

Df1(z) = ρ(z)

∫ +2L/3

−L/3

∫ +L/2

−L/2

(uw, vw)dx dy, (16)

Df2(z) = ρ(z)

∫ +2L/3

−L/3

∫ +L/2

−L/2

(uw, vw) dx dy. (17)

The first expression is the FT analogue of the WRF expression (15) using individual Fourier-

ray solutions for u, v and w. The second expression integrates the phase-averaged Fourier-ray
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covariance solutions (9) and (10). Since (16) and (17) give identical results, for simplicity

here we only use Df2
and refer to it as the diagnostic Fourier-ray drag Df . We also compute

a linear FT drag DfL computed from (17) using the linear boundary condition (7).

Since these expressions, along with (11), quantify the fraction of the surface pressure drag

Dp that appears at some height z as gravity-wave momentum flux, we will refer to them as

“wave drag” estimates. This is not to be confused with the wave drag considered in OMD

parameterizations, which is the decelerative force on the atmosphere due to dissipation of

orographic gravity-wave momentum flux with altitude, which we do not study in this paper.

d. Tuning and Validation

A series of linear (ĥm ≪ 1) WRF experiments were performed with varying sponge layer

depths and damping rates until computed drag Dw reproduced the t → ∞ linear prediction

DL after time ti without subsidiary structure due to partial reflections. We settled upon a

vertical damping profile from z =15–30 km based on eq. (21) of Klemp et al. (2008) with a

damping coefficient at z = 30 km of 0.2 s−1, slightly larger than the value chosen by Klemp

et al. (2008) due to our deeper sponge layer and higher horizontal resolution.

Figure 2a plots resulting D̂w = Dw/DL profiles at 6 hourly intervals for a β = 1, ĥm = 0.1

obstacle. The profile equilibrates after ∼18 hours to values close to the hydrostatic linear

solution D̂L = 1 with little evidence of spurious structure due to sponge-layer reflections.

Figure 2b plots the corresponding time series of (normalized) wave drag D̂w and D̂f at

zi = 6 km, along with surface pressure drag D̂p and the linear t → ∞ predictions D̂L and
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D̂fL. While surface drag D̂p → D̂L = 1 in Figure 2b after only a few hours, wave drag D̂w

builds up over time to a limiting value of ∼ 0.975 after ∼20 hours, showing that ti = 24 hours

is long enough to generate the equilibrium wave response at zi = 6 km.

This ∼2% reduction in Dw from DL in Figure 2b was also noted by Schär and Durran

(1997) in their ĥm =0.05 simulation for an axisymmetric a = 10 km obstacle. About half of

this difference is explained by the ∼1% difference between the linear Fourier-ray drag DfL

and DL due to a small nonhydrostatic reduction in drag in the former due to evanescent

modes. The remaining difference is due to lateral propagation of wave flux through the

WRF side boundaries, which DfL does not suffer from due to periodic boundary conditions

and wraparound. This boundary absorption increases with altitude as wave fields propagate

upwards and disperse more horizontally, as evident in the D̂w profiles in Figure 2a.

Note too that the D̂f and D̂w curves in Figure 2b lie virtually on top of one another,

confirming the fidelity of the diagnostic FT relations presented in section 2b for this linear

example. Detailed validation of these FT flux diagnostics for other linear cases simulated

with WRF can be found in Lindeman (2008).

3. Drag Evolution for the Axisymmetric Obstacle

Figure 3 plots the time evolution of the drag due to the axisymmetric obstacle (β = 1) as

ĥm is progressively increased from 0.1 to 1.5. The drag values are normalized by the linear

hydrostatic prediction (12), where B(1) = π/4 (Phillips 1984).

As ĥm → 1−, the equilibrium surface pressure drag D̂p becomes progressively larger than

unity (D̂L). In the ĥm =0.1–1.0 range no turbulent kinetic energy (TKE) is generated and
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essentially all the surface drag translates into propagating gravity wave momentum flux at

zi = 6 km (D̂w ≈ D̂p), consistent with the predictions of Figure 1. However, Figure 1 also

shows that ĥm values slightly larger than unity enter a junction point where all the dynamical

regimes meet and no clear dynamical response is predicted.

A small increase in ĥm from 1.0 to 1.2 triggers an abrupt change in simulated drag

behavior in Figure 3g. Surface drag D̂p becomes ∼50% larger than linear predictions and

equilibrates to an oscillating state with a period of close to 4 hours. Wave drag D̂w and D̂f

at zi = 6 km track one another well and show similar 4-hour cycling seen in D̂p, but typically

at 15–20% lower values and with a slight phase lag due to vertical propagation. Thus surface

drag no longer translates fully into a propagating wave response at 6 km altitude.

The periodic nature of the drag is due to cyclical wave buildup and breakdown, as

depicted in Figure 4 for the cycle between hours 20 and 24. At hour 20, Dp is large while

Dw is reduced (Figure 3g) as forced waves propagate upwards and build in amplitude at

zi = 6 km. One hour later wave drag Dw has grown to the point where isentropes at z ∼3 km

in Figure 4b are superadiabatic and generating enhanced TKE. At hour 22 wave breaking

peaks with a large burst of TKE descending the obstacle downslope. This TKE has migrated

downstream by hour 23, at which time both surface drag and wave drag have been reduced

by accumulated local turbulent dissipation and/or upstream responses to wave breaking that

increase flow splitting. At hour 24 the isentropic and TKE structures in Figure 4e return to

a morphology almost identical to that at hour 20 as surface drag and wave activity build up

again and the cycle repeats. Note that TKE (strong nonlinearity) is confined below zi =6 km,

consistent with requirements of the FT method and with the agreement between D̂w and

D̂f in Figure 3e. Despite much shorter time series, axisymmetric obstacle simulations of
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Miranda and James (1992) and Vosper (2000) show evidence of similar periodic vacillations

in both surface and wave drag, but at larger ĥm values.

A further increase of ĥm to 1.5 yields a high-drag state with wave breaking above the

lee downslope. In contrast to our ĥm = 1.2 result and the ĥm = 1.5 results of Miranda and

James (1992), however, drag in Figure 3h does not vacillate periodically. D̂p instead settles

to an approximate equilibrium value of ∼1.3 while D̂w builds up gradually to an equilibrium

value of ∼0.9. The former compares favorably to the nonvacillating equilibrium D̂p ∼1.2

found by Schär and Durran (1997).

Figure 5 plots local gravity-wave momentum fluxes at zi =6 km after 24 hours, as derived

from WRF output using the FT relations (9) and (10). Figure 5a reveals the expected linear

ship-wave response (Smith 1980) at ĥm = 0.1, with net westward ρuw(x, y, z) peaking in

magnitude near the obstacle peak, and smaller ρvw(x, y, z) values distributed antisymmet-

rically about y =0 and peaking in magnitude in the divergent wing regions. While wave

fluxes at ĥ = 1.0 in Figure 5b are two orders of magnitude larger [consistent with the scaling

(13)], the wave pattern is very similar, except the region of maximum ρ|uw| is now displaced

slightly downstream. At ĥm = 1.2 and 1.5, wave momentum flux patterns are noticeably

modified. Peak |ρuw| regions are narrower and located above the obstacle downslope. For

ĥm = 1.5, Lindeman et al. (2008) showed that this results from leeside collapse and ascent of

isentropes, which provide a sharp deep region of obstacle-like forcing to the flow that controls

the form of the waves at 6 km more than the actual obstacle shape (see also Figure 4). This

narrower forcing generates waves with shorter horizontal wavelengths (Ding et al. 2003; Lin-

deman et al. 2008), and it’s less axisymmetric nature reduces three-dimensional propagation

of momentum flux into diverging wing regions in Figures 5c and 5d.
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Figure 6 plots the drag time series for ĥm =2–5. Similar responses are seen in all cases.

D̂p decreases with time to values below unity and does not equilibrate after 24 hours. By

contrast, D̂w steadily increases with time and equilibrates after ∼15 hours at values signif-

icantly smaller than D̂p, consistent with greater flow splitting and lee-vortex generation at

these larger ĥm values (Schär and Durran 1997).

A cross section of isentropes and TKE at y = 0 after 24 hours is shown in Figure 7

for the ĥm = 3 simulation. A sharp zone of isentropic collapse and ascent is evident above

the top third of the lee downslope, with TKE peaked sharply within this leeside trough

at unstable temperature gradients. As for the ĥm =1.5 obstacle (Lindeman et al. 2008),

Figure 7 shows that this leeside isentropic structure provides the major obstacle-like forcing

for the waves that emerge at zi = 6 km, which are concentrated downstream of the obstacle

peak. Similar leeside offsets in wave activity are evident in the ĥm = 3.0 results of Schär and

Durran (1997). Since the leeside isentropic structure in Figure 7 is quite steady with time

(not shown), the wave fields it forces are approximately stationary and steady, and thus their

integrated momentum fluxes D̂w are well described by the FT diagnostic D̂f in Figure 6b.

Figure 8 shows the corresponding local wave momentum fluxes ρuw and ρvw at 6 km.

Zonal fluxes peak in magnitude above the obstacle downslope due to stationary obstacle-like

forcing by lee-side isentropic structures as in Figure 7. These peak fluxes are concentrated

within regions of progressively smaller horizontal extent as ĥm increases, consistent with

a progressively higher dividing streamline and flow above passing over a smaller narrower

uppermost obstacle peak, forcing waves of correspondingly smaller horizontal wavelength (see

Figure 7). At the largest (most nonlinear) ĥm = 4 and 5, subsidiary |ρuw| maxima appear

in Figure 8c and 8d at the lateral edges of the obstacle, due to flow splitting and diversion
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around the obstacle peak, resulting in Bernoulli-type accelerations that force waves at the

cross-stream extremities of the obstacle. A similar high–ĥm transition in wave forcing to the

outer edges of the obstacle was seen in the β = 5 simulations of Ólafsson and Bougeault

(1996). The fine-scale wave structures at the largest ĥm may be compromised somewhat

by our 1.5 km gridpoint resolution as the clipped obstacle width for wave forcing becomes

progressively narrower as the dividing streamline gets progressively higher with increasing

ĥm.

Since some drag responses do not obviously equilibrate after 24 hours, the ĥm = 1.2 and

3.0 WRF simulations were integrated out to 48 hours. Figure 9 shows the resulting drag

profiles. Oscillatory pressure and wave drag at ĥm = 1.2 is clearly a robust equilibrium

result. The secular decrease in D̂p out to 24 hours seen for ĥm = 3.0 abates in Figure 9b

after ∼28 hours, wherepon D̂p increases slightly then equilibrates at ∼0.5 at ∼36 hours.

Wave fluxes remain largely unchanged during this period. These integrations suggest that

drag in the 20-24 hour range is close to the long-time-limit equilibrium response.

Thus Figure 10 plots mean drag as a function of ĥm over the 20–24 hour equilibrium

range, both in normalized and absolute form. At 0 < ĥm < 1, Figure 10a shows a gradual

linear increase in D̂p above unity. A similar small linear increase over this ĥm range was

modeled by Epifanio and Durran (2001) using weakly-nonlinear semianalytical theory. This

linear trend breaks at ĥm & 1 with the onset of a peak oscillating high-drag wavebreaking

state of D̂p =1.4-1.55 at ĥm = 1.2, with D̂p decreasing monotonically with ĥm thereafter.

This mean D̂p variation with ĥm agrees with that found by Bauer et al. (2000) (who used

a slightly different obstacle shape) but differs somewhat from the results of Miranda and

James (1992), who found D̂p peaking at ∼1.8 at ĥm ∼ 1.5. Our D̂p values at ĥm =1.5
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and 3 are similar to those of Schär and Durran (1997) but are again smaller than those of

Miranda and James (1992). Our results support the contention of Bauer et al. (2000) that

the Miranda and James (1992) drag values are systematically too large.

Next we study mean Dw values and how they relate to surface pressure drag in the

nonlinear ĥm range where Dw/Dp < 1. A common parameterization approach is to estimate

the height zds of the dividing streamline, separating flow over the obstacle peak (z > zds)

from flow blocked or diverted around the obstacle (z < zds), as

zds = (1 − αFr)hm =

(

hm − α
U

N

)

(18)

(Hunt and Snyder 1980), where

α ≡ ĥcs = Fr−1
cs , (19)

the critical inverse Froude number for flow splitting. The “clipped” obstacle for wave forcing

is then hc(x, y) = max[h(x, y), zds] (Lindeman et al. 2008) which has a peak height

(hc)m = hm − zds = α
U

N
, (20)

whose normalized height, from (2), is equal to α. Figure 1 predicts that α varies with β,

and it can also vary with different definitions of zds (see section 6.6 of Baines 1995). Here,

for simplicity, we will adopt the Sheppard criterion of α = 1 which, despite its theoretical

shortcomings (Smith 1989b), reproduces laboratory measurements of zds (Snyder et al. 1985;

Vosper et al. 1999; Ding et al. 2003).

Large triangles in Figure 10a show the resulting wave drag D̂c calculated by the FT

method using hc(x, y) as the linear boundary condition (7) at zi = zds. An even simpler

analytical approximation assumes the linear solution (12) for the clipped obstacle height
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(hc)m, which yields a constant “saturated” clipped wave drag (see Appendix A) of

Dc1 = B(β)aρ0α
2U3

N
, (21)

plotted with small triangles in Figure 10b.

Both Dc and Dc1 systematically underestimate the actual wave drag at ĥm & 1 in Fig-

ure 10. Nonetheless, Dc1 reproduces the flat trend in Dw at ĥm > 2.5 in Figure 10b but with

Dw/Dc1 ≈ 1.5: an α of 1.2 instead of 1 would make this ratio near unity, a choice that can

be justified from Figures 1, 3 and 10a. Dw/Dc1 is larger in the range ĥm =1.2–2 with a peak

near 2, demarking this region as a “high wave-drag state.”

It is also useful to study how Dw might scale with Dp given that many OMD param-

eterizations quantify gravity-wave fluxes by scaling surface drag. A reasonable Dp-scaled

empirical fit to Dw at all ĥm, shown as the solid gray curve in Figure 10, is:

Dw ≈ Dfit =































Dp 0 ≤ ĥm ≤ 1,

Dpĥ
−0.9
m 1 < ĥm ≤ 2.5,

(Dpĥ
−0.9
m )|ĥm=2.5 ĥm > 2.5.

(22)

4. Drag Evolution for the Elliptical Obstacle

Figure 11 plots time evolution of the elliptical (β = 3) obstacle drag as ĥm is increased

from 0.1 to 1.5. Again, drag is normalized by the corresponding hydrostatic linear prediction

DL in (12), where B(3) ≈ 0.9369β ≈ 2.82 (Phillips 1984). Thus the linear drag in this case

is enhanced over that of the axisymmetric obstacle by DL(3)/DL(1) = B(3)/B(1) ≈ 3.6.

At β = 3, Figure 1 predicts nonbreaking waves at 0 < ĥm < ĥcb ∼ 0.73, followed by an

extended wave breaking regime at ĥm > ĥcb. Drag at ĥm =0.1–0.5 in Figure 11 reveals pure
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wave responses, for which D̂p ≈ D̂w ≈ D̂f ≈ DL, that generate no TKE. The ĥm = 0.7 drag

in Figure 11d oscillates due to small vacillating levels of TKE (peaking at ∼0.01–0.05 m2 s−2)

that form at unstable wave phases, consistent with the predicted wave breaking threshold

of ĥcb ∼ 0.73 in Figure 1. At ĥm =0.85–1.5, strong wave breaking dynamics are simulated,

again consistent with Figure 1. The surface drag D̂p at ĥm =0.85–1.5 undergoes large cyclical

excursions with a period that decreases from ∼9 hours at ĥm = 0.85 (Figure 11e) to ∼6 hours

at ĥm = 1.5 (Figure 11h).

Unlike the corresponding β = 1 results in Figure 3, the diagnostic FT wave drag D̂f

does not reproduce D̂w well at ĥm & 0.7 in Figure 11. Reasons why are highlighted in

Figure 12, which plots isentropes and TKE cross sections at 2 hourly intervals along the

y = 0 axis for the ĥm = 0.85 simulation. At hour 3 when Df and Dw agree in Figure 11e,

nonlinearity in the form of overturning isentropes and large levels of TKE is confined below

zi = 6 km (where D̂f and D̂w are evaluated), consistent with the assumptions of the FT

method (see section 2b). However, unlike the β = 1 cases (see Figure 4), nonlinearity is not

confined below 6 km at later times. For example, at hour 7 there is strong overturning and

turbulent mixing at ∼10 km altitude (Figure 12c). At later times high-altitude wave activity

is evident well downstream of the obstacle in Figures 12d and 12e. The sources of these waves

are near-surface wake dynamics (e.g., Dupont et al. 2001) and wavebreaking regions at higher

altitudes (e.g., Bacmeister and Schoeberl 1989; Satomura and Sato 1999; Tan and Eckermann

2000). The resulting waves are generally nonstationary and some may propagate downwards

(Bacmeister and Schoeberl 1989), and thus are not properly characterized by the stationary

upgoing gravity-wave dispersion relation (6) that underpins the FT diagnostics.

Drag at the larger ĥm values of 2–5 is plotted in Figure 13. The vacillating wave breaking
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regime extends to at least ĥm = 3, where the drag vacillation is now weak and its period

has reduced to ∼4 hours (Figure 13b). At still larger ĥm the pressure drag decreases more

uniformly with time and wave drag settles to equilibrium values, similar to the behavior

found for the β = 1 obstacle at similarly large ĥm values in Figure 6.

Given the large drag vacillations for the β = 3 obstacle, mean drag is computed over the

last 12 hours of each simulation, with resulting means and standard deviations plotted in

Figure 14. Mean drag in the range 0 < ĥm . 0.5 does not exhibit a noticeable linear increase

with ĥm as was found for the axisymmetric obstacle, but instead tracks the hydrostatic

analytical value of D̂L = 1 closely. This persists to ĥm = 0.7 despite the vacillation in

Figure 11d and associated standard deviation in Figure 14. At ĥm = 0.85, a large abrupt

increase occurs in both D̂p and its standard deviation, due to sudden onset of a vacillating

high-drag wavebreaking state. The high-drag D̂p enhancements peak at ĥm ∼ 1. At larger

ĥm, mean D̂p decreases monotonically as do the associated standard deviations. Wells et al.

(2008) report a mean D̂p ∼ 1.1 at ĥm = 2 in their Boussinesq simulations without Coriolis

terms, somewhat larger than our mean value here of 0.83 ± 0.13.

Wave drag D̂w, which tracks D̂p and D̂L at small ĥm, drops abruptly below D̂p at ĥm &

0.85 as wave breaking and (at larger ĥm) flow splitting cause progressively greater fractions

of the surface pressure drag to manifest as near-surface dynamics rather than gravity waves.

Despite the strongly nonlinear dynamics that yield a generally nonstationary nonlinear wave

field at zi = 6 km (Figure 12), the unnormalized areally-averaged momentum flux Dw is

fitted fairly well throughout the extended nonlinear range ĥm ≈0.85–5 in Figure 14b by the

simple clipped obstacle prediction D̂c1 in (21). For example, mean Dw values at ĥm =3–5 are

only ∼10–20% larger than Dc1. At ĥm =0.85–3, Dw exceeds Dc1 by more than this factor,
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consistent with this range of ĥm being a high-drag wave-breaking state.

5. Discussion

Figure 15 compares the mean normalized surface-pressure and far-field wave drags for

the β = 1 and β = 3 obstacles as a function of ĥm. While D̂w = D̂p for both obstacles in the

mutual “linear” (non-TKE) range ĥm ∼0.1–0.7, the D̂w curve for the axisymmetric obstacle

increases linearly with ĥm in this range to values progressively larger than unity, whereas

the D̂w curve for the elliptical β = 3 obstacle stays close to the hydrostatic linear prediction

of D̂L = 1.

In the high-drag region of ĥm ∼1–2, mean D̂p values for the β = 3 obstacle peak at a

smaller ĥm and attain larger values than for the axisymmetric obstacle, and individual values

exhibit a much larger variation with time (standard deviation). This is broadly consistent

both with Figure 1 and the more intense wave breaking (relative to axisymmetric obstacles)

expected for elliptical obstacles (1) whose long axis b is aligned perpendicular to the flow,

due to less dispersion of wave activity that leads to more concentrated and unstable wave

fields. The smaller Dw values at zi = 6 km for the β = 3 compared to β = 1 obstacle

are consistent with greater near-surface dissipation of waves by overturning and TKE in the

β = 3 simulations (c.f. Figures 4 and 12).

In the nominal flow-splitting regime of ĥm & 2, D̂p values in Figure 15 are almost

identical for both obstacles. Using a different obstacle shape, Bauer et al. (2000) also found

very similar D̂p values at large ĥm for β =1–4. Some analytical models of flow-blocking drag

predict D̂p ∝ ĥ−1
m at large ĥm (Lott and Miller 1997; Scinocca and McFarlane 2000), while
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others suggest D̂p ≈ D̂L ∼ 1 due to surface drag enhancements from rotation and friction

(Webster et al. 2003). Our common D̂p curve is well fit as ĥ−1.3
m at ĥm =2–5. Stein (1992)

reported a D̂p fit ∝ ĥ−0.7
m in this range based on two-dimensional simulations.

Absolute wave drag Dw at ĥm ∼2.5–5 was almost constant for both the β = 1 and β = 3

obstacles, and predicted reasonably accurately by scaling the “saturated” linear wave drag

Dc1 given by (21) (see Figures 10b and 14b). It is remarkable that Dw values are all so

similar in this range, given the large variation in local wave momentum-flux morphology as

a function of ĥm in Figure 8, and nonstationary transient waves from surface wake and TKE

sources for the β = 3 obstacle in Figure 12. While this Dw ∼ Dc1 finding may prove to be

very convenient for parameterizing orographic gravity wave momentum fluxes in this range,

it must be recognized that the simple theoretical arguments that yield Dc1 (see Appendix

A) are inconsistent with the WRF-simulated wave fields. As explicitly demonstrated by

Lindeman et al. (2008), the effective obstacle forcing for these waves does not resemble the

clipped obstacle forcing underpinning Dc1. It is instead dominated by obstacle-like forcing

produced by the leeside fluid dynamical response, specifically the sharp descent and ascent of

isentropes along the obstacle downslope (see Figure 7), which yield highly concentrated wave

momentum flux in Figure 8 above the obstacle downslope, rather than near the peak. In

short, (21) gives an approximately correct answer but for demonstrably wrong reasons. Why

Dc1 is a reasonable fit to modeled wave fluxes in this nonlinear range is not yet clear, but this

need not be a barrier to using it in parameterizations. For example, parameterizations based

the saturated gravity-wave spectra observed in the middle atmosphere are now common in

models, despite the lack of an accepted theory for how these spectra are formed (McLandress

and Scinocca 2005).
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Indeed, several OMD parameterizations already use relations akin to Dc1 to assign wave

momentum fluxes in this nonlinear hm range (Scinocca and McFarlane 2000; Webster et al.

2003). The value of α, defined equivalently in these OMD schemes via (19) as the critical in-

verse Froude number Fr−1
c (since Fr−1

cb ≈ Fr−1
cs is also assumed), must be chosen. Originally

these schemes used Fr−1
c ∼0.5–1 (Scinocca and McFarlane 2000; Webster et al. 2003) but,

given a lack of theoretical closure on Dw/Dp values at ĥm ≥ Fr−1
c , Fr−1

c has been used as a

“free” tuning parameter in models and subsequently revised downwards to ∼0.25–0.375 to

improve skill (Wells et al. 2005; Scinocca et al. 2008). Given our finding of Dw/Dc1 ∼1.1–2.0

for a Dc1 calculation using Fr−1
cs = α = 1 and the Fr−2

cs dependence of Dc1 in (21), these re-

sults imply order of magnitude underestimates of orographic gravity wave momentum fluxes

at ĥm & 1 for Frc ∼0.25–0.375.

This is illustrated further in Figure 16, which plots Dw/Dp as a function of ĥm for both

the β = 1 and β = 3 obstacles. Some previous simulations have suggested that Dw/Dp

rapidly decreases at ĥm & Fr−1
c and essentially vanishes at large ĥm (Miranda and James

1992; Wells et al. 2005). While Dw/Dp certainly drops suddenly below unity at ĥm ∼ Fr−1
c

in Figure 16, especially for the β = 3 obstacle, our results also show that, even at large

ĥm ∼2–5, propagating “far field” gravity waves remain a significant (>20%) fraction of the

total pressure drag. Our ĥm = 2, β = 3 value of 0.43 ± 0.10 at zi = 6 km in Figure 16b

compares reasonably to a corresponding value of ∼0.52 evaluated by Wells et al. (2008) at

∼100 m above their obstacle peak. The slightly smaller mean value here is consistent with

some additional near-field turbulent dissipation of waves in propagating to zi = 6 km.

Between these asymptotic wave-flux limits of Dw ≈ DL at ĥm ≪ 1 and Dw ∼ Dc1

at ĥm ≫ 1, Figures 10b and 14b also show an intermediate zone at ĥm ∼1–2.5 where Dw
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attains maximum mean values and can vacillate. By analogy to surface drag, we refer to this

region as a “high-wave-drag” state. However, unlike surface drag, Dw does not exceed DL in

this high-drag range, but instead exceeds the saturated wave-drag Dc1, or more accurately,

exceeds the limiting Dw at ĥm ≫ 1. These wave-drag enhancements are fairly small for the

β = 3 obstacle (presumably due to greater low-level dissipation due to wave breaking) but

are on the order of 50% for the axisymmetric obstacle in Figure 10b.

For OMD parameterization, our isolation of the far-field gravity-wave component Dw of

the total surface drag Dp in turn defines the component Db = Dp −Dw that is confined and

deposited below zi = 6 km. Figure 17 plots its variation with ĥm in both normalized and

absolute form for both the β = 1 and β = 3 obstacles. While Db is usually referred to as

flow-blocking drag in OMD parameterizations, here it likely includes other effects, such as

flux deposition due to low-level wave breaking.

Since this study is a first methodical attempt to characterize far-field gravity-wave com-

ponents of the drag from three-dimensional obstacles at a range of nonlinear ĥm values, we

employed a number of simplifications to make wave characterization easier. One potentially

important omission was the Coriolis force (f = 0). Ólafsson and Bougeault (1997) compared

surface drag in f = 0 and f 6= 0 simulations and found larger D̂p values at large ĥm for

f 6= 0. They used a = 40 km rather than the 10 km value used here. Wells et al. (2008)

argued that the primary effect of nonzero f at obstacle widths O(10 km) was to introduce

asymmetries to the flow, which trigger vortex shedding that yields larger D̂p values (e.g.

Vosper 2000). For example, Wells et al. (2008) found similar D̂p between f 6= 0 simulations

and f = 0 simulations in which asymmetry was introduced artifically with a potential tem-

perature perturbation (Schär and Durran 1997). We included neither rotation nor potential
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temperature perturbations in these runs to keep our study of wave momentum fluxes as sim-

ple as possible. As a result, our drag values may be underestimated at large ĥm. That having

been said, our nonlinear simulations yield asymmetric lee vortex evolution after ∼18 hours.

For the β = 3 obstacle, an additional question for OMD parameterization is how wave

momentum fluxes at ĥm & Fr−1
c vary as the angle ϕ between the incident flow vector and

the short axis of the obstacle changes from our value of ϕ = 0◦. While unable to predict

mean magnitudes, Wells et al. (2008) found that the linear drag relations of Phillips (1984)

provided a good fit to how surface pressure drag varied as a function of ϕ for a β = 3 obstacle

at ĥm = 2. They also found a strong Dw/Dp variation with ϕ, from ∼0.5 at ϕ = 0◦ to values

∼0.9 at ϕ near ±90◦. Since the latter ϕ values are equivalent to changing from a β = 3

to a β = 1/3 obstacle, Figure 1 predicts for ĥm = 2 and β = 1/3 that the flow is near the

threshold between linear wave and flow-splitting dynamics, for which Dw/Dp ∼ 1 would be

expected based on the current results.

Other omitted processes may also be important in setting gravity wave momentum fluxes.

For example, using a no-slip lower boundary condition, Ólafsson and Bougeault (1997) found

surface drag reductions at ĥm ∼1–3 and enhancements at larger ĥm, relative to correspond-

ing free-slip results, although subsequent simulations suggest smaller frictional modifications

at large ĥm (Wells et al. 2005). From our OMD parameterization perspective, we can justify

the omission of surface friction here by noting that it is parameterized separately in global

models with orographic roughness, land-surface and planetary boundary layer parameteri-

zations. Thus, frictional modifications to parameterized OMD would ideally involve inputs

from those schemes that modify a frictionless baseline OMD parameterization. In practice,

however, current OMD parameterizations in models are not modified by frictional inputs.
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As a result, the model-tuned values of Fr−1
c ∼0.25–0.375 used in some OMD parameteriza-

tions, which significantly underestimate the gravity wave momentum fluxes reported here,

may parameterize the mean overall effect of friction and other omitted processes in reducing

far-field wave fluxes. Thus, future investigations of the influence of friction, ϕ, and other

omitted processes on wave momentum fluxes at nonlinear Froude numbers would clearly be

worthwhile.

6. Summary

Using WRF model simulations, we studied mesoscale dynamics resulting from a steady

unsheared flow impinging upon an idealized obstacle (1) of along-stream width a = 10 km

and cross-stream width b = βa. We focused on an axisymmetric (β = 1) and elliptical

(β = 3) obstacle, and for each performed experiments in which the normalized obstacle

height ĥm = Fr−1 was progressively increased from the linear regime (ĥm ≪ 1) through

to the highly nonlinear regime (ĥm ≫ 1), as shown in Figure 1. The primary foci of our

analysis were the local and areally-integrated momentum fluxes of the far-field equilibrium

gravity wave fields that propagated to a height of 6 km. Those fluxes were quantified both

directly from the WRF velocity anomalies and indirectly using diagnostic Fourier-transform

methods. We sought mean results that could be used to specify gravity-wave momentum

fluxes in subgrid-scale orographic mesoscale drag (OMD) parameterizations in global weather

and climate models. Our major findings are summarized schematically in Figure 18.

Since many OMD parameterizations assign wave momentum fluxes by scaling surface

pressure drag, Figure 18a first summarizes the bulk properties of (normalized) pressure drag
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as a function of ĥm. At ĥm < Fr−1
c pressure drag is close to linear hydrostatic predictions

(D̂p ∼ 1) and translates fully into propagating gravity wave momentum flux at 6 km. At

Fr−1
c < ĥm . 2 high-drag wave-breaking states (D̂p > 1) occur, with the Fr−1

c threshold

predicted to within ∼10% for both the β = 1 and β = 3 obstacle using the Smith (1989b)

curves in Figure 1. Surface drag for the β = 3 obstacle vacillates in the ĥm ∼0.7–3 range

due to cyclical buildup and breakdown of wave activity, with the period and amplitude of

these vacillations decreasing with increasing ĥm. Periodic drag vacillation occurred for the

axisymmetric obstacle only at ĥm = 1.2. At ĥm &2–3 pressure drag decreased smoothly

with time to normalized equilibrium values that were almost identical for both obstacles,

and were well fitted as ĥ−1.3
m .

Mean features in the areally-integrated wave momentum fluxes, or “wave drag,” at zi =

6 km are summarized in absolute (unnormalized) form in Figure 18b. In the linear ĥm < Fr−1
c

range, wave drag Dw matches both Dp and DL and thus varies according to the latter’s

analytical ĥ2
m dependence in (13). While at ĥm & Fr−1

c Dw suddenly becomes a significantly

smaller fraction of the total pressure drag (see Figure 16), absolute values peak in the high-

drag range Fr−1
c < ĥm . 2. As with pressure drag, wave drag vacillates in this range due to

periodic buildup and breakdown of wave amplitudes just above the obstacle (see Figure 4).

At ĥm &2–3 wave drag levels off to a constant value, which is quantified to within 10-

40% by a “saturated” clipped wave drag Dc1 given by the analytical relation (21) using

α = Fr−1
cs ≈ 1. Stable invariant wave drag in this high–ĥm range is a surprising finding,

given that the three-dimensional distribution of wave momentum flux varies appreciably with

ĥm over this range (see Figure 8) and can be additionally impacted by nonstationary wave

responses in the elliptical obstacle simulations (see Figure 12). We show that the analytical
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relation Dc1 arises here from a demonstrably incorrect model of the ĥm & Fr−1
c wave field.

Nonetheless, based on the agreement in Figure 18b, it offers a simple and convenient way

of accurately quantifying wave flux in this nonlinear ĥm range. Mean wave-drag curves like

those in Figure 18b can easily be incorporated into existing OMD parameterizations, given

their close current associations with the mean drag properties of idealized three-dimensional

obstacles (see, e.g., Scinocca and McFarlane 2000).

Indeed, some current OMD parameterizations already use analogues of Dw ∼ Dc1 to

assign wave momentum fluxes at nonlinear Froude numbers. While we found best agreement

using Fr−1
cs =1–1.2, the values of Fr−1

c (≈ Fr−1
cs ) used in OMD parameterizations that

have been “tuned” to optimize model skill are currently ∼0.25–0.375, which, based on our

results, imply order-of-magnitude underestimates of parameterized orographic gravity wave

momentum fluxes at ĥm > Fr−1
c in such models. However, our model simulations do not

include additional effects like surface friction and rotation which may reduce wave fluxes.

Our results also show large vacillations in both surface and wave drag, particularly in the

range Fr−1
c < ĥm .2–3, which existing schemes do not include, but could, for example, via

an explicitly stochastic parameterization of OMD (see, e.g., Palmer 2001).
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APPENDIX A

Analytical Wave Drag Relations Based on the Dividing

Streamline Concept

We consider waves forced by flow over a “clipped” obstacle hc(x, y) located between the

dividing streamline zds and the obstacle peak hm (Lindeman et al. 2008). The simplest

derivation assumes the same shape as the unclipped obstacle, same widths a and b, but

reduced height (hc)m = hm −zds given by (20). Assuming the linear hydrostatic solution DL

holds at 0 ≤ ĥm ≤ α, then at ĥm > α the wave drag is

Dc1 = DL

[

(hc)m

hm

]2

= DLα2ĥ−2
m = B(β)aρ0α

2U3

N
. (A1)

In reality the clipped mountain peak is narrower and generates much shorter-scale waves

(Ding et al. 2003; Lindeman et al. 2008). A better approximation then might be to assume

that the effective half widths ac and bc of the clipped obstacle hc(x, y) reduce linearly with

the clipping height so that the obstacle’s height-to-width ratio remains constant. Ignoring

possible nonhydrostatic effects as ac and bc contract, this yields a clipped wave-drag

Dc2 = DLα3ĥ−3
m . (A2)

In fact, neither approximation fits the actual solution Dc from the Fourier-ray calculation

(large triangles in Figure 10), which is most closely fitted at ĥm > α as DLĥ−2.5
m , essentially

halfway between approximations (A1) and (A2).
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shading shows turbulent kinetic energy (units m2 s−2: see color bar). Gray line

depicts zi = 6 km where gravity wave momentum fluxes are computed. 42

5 Each panel pair plots the FT-based ρuw and ρvw fields for the β = 1 obstacle at
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ĥm = 0.1

D̂ p 
D̂ w 
D̂ f D̂ fL 

D̂ L 

(a)

0 20 40 60 80
Ut/a

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

no
rm

al
iz

ed
 d

ra
g 

D̂

0 5 10 15 20
t (hours)
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altitude after 24 hours, for ĥm values of (a) 0.1, (b) 1.0, (c) 1.2, and (d) 1.5. Flux units in each
accompanying color bar are kg m−1 s−2.

43



0 20 40 60 80
Ut/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
iz

ed
 d

ra
g 

D̂

0 5 10 15 20
t (hours)
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ĥm = 4.0
(c)

0 20 40 60 80
Ut/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
iz

ed
 d

ra
g 

D̂

0 5 10 15 20
t (hours)
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Fig. 6. Nondimensional drag as a function of time for the β = 1 obstacle for normalized obstacle
heights ĥm ranging from (a) 2.0 to (d) 5.0. Curve definitions are as given in Figure 3a.
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Fig. 9. Nondimensional drag as a function of time out to 48 hours for the β = 1 obstacle for
normalized obstacle heights ĥm of (a) 1.2 and (d) 3.0. Curve definitions are given in Figure 3a.
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Fig. 11. Nondimensional drag as a function of time for the β = 3 obstacle for normalized obstacle
heights ĥm ranging from (a) 0.1 to (h) 1.5. The various drag curves are labeled at the top of panel
(a). See text for symbol definitions.
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Fig. 12. Isentropes as a function of x and z (1 K contour interval) along the central obstacle
axis (y = 0) at hours 3, 5, 7, 9 and 11 for ĥm = 0.85 and β = 3. Color shading shows areas of
turbulent kinetic energy (units m2 s−2: see color bar). Gray line depicts zi = 6 km where gravity
wave momentum fluxes are computed.
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Fig. 13. Nondimensional drag as a function of time for the β = 3 obstacle for normalized obstacle
heights ĥm ranging from (a) 2.0 to (d) 5.0. Curve definitions are as given in Figure 11a.
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Fig. 14. (a) Nondimensional and (b) absolute mean drag (t =12–24 hours) and standard deviations
(gray error bars) versus ĥm for β = 3 WRF simulations. Dotted gray line at ĥm ∼ 0.7 demarks
responses with and without TKE at smaller and larger ĥm, respectively. The various drag terms
are labeled top right: see text for symbol definitions.
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Fig. 15. (a) Nondimensional mean surface pressure drag and wave drag versus ĥm for the β = 1
(solid) and β = 3 (dotted) obstacles.
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Fig. 16. (Solid) ratio of wave drag Dw at 6 km to surface pressure drag Dp for (a) β = 1 and (b)
β = 3 obstacle. Standard deviations in (b) were derived from the individual standard deviations of
Dw and Dp in Figure 14.
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Fig. 17. (a) Normalized and (b) absolute mean flow-blocking drag versus ĥm for the β = 1 (solid)
and β = 3 (dotted) obstacles.
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ĥm

0

Dc1

2Dc1

D
w

ĥm
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Fig. 18. Schematic diagram of the mean trends (black line) and range of variability (thin gray
lines) in (a) nondimensional surface pressure drag D̂p and (b) absolute wave drag Dw versus ĥm,
based on WRF simulations for the β = 1 and β = 3 obstacles.
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